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Les exercices marqués d’un † sont à faire en priorité, ceux marqués d’un † sont des exercices complémen-
taires, à faire pour aller plus loin.

Séries entières
Exercice 1. Vrai-faux d’échauffement.
Vrai ou faux ? Donner une démonstration ou un contre-exemple. On considère f(z), g(z) ∈ C[[z]], et on note
ρ(f) le rayon de convergence d’une série entière f .

1. ρ(f + g) > min(ρ(f), ρ(g)) et ρ(fg) > min(ρ(f), ρ(g)).

2. Si ρ(f) > ρ(g), alors ρ(f + g) = ρ(g).

3. Si ρ(f) > ρ(g), alors ρ(fg) = ρ(g).

4. Si f ∈ C[[z]] converge sur le cercle |z| = r, alors ρ(f) > r. Et en remplaçant la conclusion par ρ(f) > r ?

5. ρ(f) = ρ(f ′).

Exercice 2. Série harmonique.
On définit, pour n > 1, Hn = 1 + 1

2 + ...+ 1
n , et

H(z) =
∑
n>1

Hnz
n.

Calculer le rayon de convergence de cette série et démontrer que H(z) = − log(1−z)
1−z formellement (et donc pour

tout z dans le disque de convergence).

Exercice 3. Une expression explicite pour les suites de Lucas.
On considère, pour a, b ∈ C, b non-nul, la suite définie par L0 = 0, L1 = 1 et Ln+1 = aLn + bLn−1. On pose
L(z) =

∑
n>0 Lnz

n.

1. Montrer que L(z) = z
1−az−bz2 .

2. En écrivant 1 − az − bz2 = −b(z − α)(z − β) et en réalisant une décomposition en éléments simples,
donner une expression explicite pour Ln. On pensera à différencier les cas α 6= β et α = β.

Exercice 4. Somme de carrés.
Notons r2(n) le nombre de points à coordonnées entières positives sur le cercle de rayon

√
n, et Dn le nombre

de points à coordonnées entières positives dans le disque de rayon
√
n (par exemple, r2(5) = 2 car 22 + 12 =

12 + 22 = 5). Démontrer que ∑
m>0

zm
2

2

=
∑
n>0

r2(n)z
n

puis que

1

1− z

∑
m>0

zm
2

2

=
∑
n>0

Dnz
n.

Quels sont les rayons de convergences de ces séries ?

†Merci à Hadrien et Louise pour ce phoque et ce raton-laveur en Tikz.
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Exercice 5. Un peu de combinatoire.
Soit Pn le nombre de façons de partitionner un ensemble de n éléments en morceaux de cardinal 1 ou 2, on
considère S(z) :=

∑
n>0

Pn
n! z

n.

1. Prouver l’égalité de séries entières
S′(z) = (1 + z)S(z).

2. En déduire une expression de S(z).

3. En déduire une formule pour Pn.

Exercice 6. L’anneau C[[z]].
On introduit sur C[[z]] la valuation ord définie par

ord

∑
n>0

anz
n

 = min{n > 0 : an 6= 0}

et ord(0) = +∞.

1. Montrer que ord(f) > k si, et seulement si zk divise f dans C[[z]].

2. Vérifier que ord(fg) = ord(f) + ord(g).

3. Montrer que f(z) ∈ C[[z]] est inversible si et seulement si elle vérifie ord(f) = 0. En particulier, tout
élément f(z) ∈ C[[z]] s’écrit uniquement comme f(z) = zng(z) avec g inversible et n = ord(f).

4. Soit I ( C[[z]] un idéal. Montrer que I ⊆ zC[[z]].

5. Montrer qu’en fait il existe m tel que I = zmC[[z]]. L’anneau C[[z]] est un anneau principal !

6. Vérifier que les résultats de cet exercice restent valides si l’on remplace C[[z]] par l’anneau C{z} des séries
entières de rayon de convergence > 0.

Exercice 7. Composition de séries entières.
Soit f(z) =

∑
n>0 anz

n ∈ C[[z]], h(z) =
∑
n>1 cnz

n ∈ C[[z]]. On note
∑
n>m Cm,nz

n la série entière h(z)m. On
définit la série entière composée f(h(z)) comme :

f(h(z)) =
∑
n>0

(
n∑

m=0

amCm,n

)
zn.

1. Montrer que (f +g)(h(z)) = f(h(z))+g(h(z)) par calcul direct. Pouvez-vous montrer la même propriété
pour le produit ?
On note fm(z) le polynôme a0 + a1z + ...+ amz

m et hn(z) le polynôme c1z + ...+ cnz
n

2. Montrer que pour m,n > k, les termes de degré 6 k du polynôme fm(hn(z)) ne dépendent pas de
m,n > k et sont les mêmes que ceux de la série entière f(h(z)).

3. En déduire que la composition est compatible au produit et associative.

4. Vérifier que si f et h ont un rayon de convergence non-nul, alors f(h(z)) a un rayon de convergence
non-nul, et que f(h(z)) est bien le développement en série entière de la fonction f ◦ h au voisinage de 0.

Exercice 8. Théorème de Cauchy pour les équations différentielles.
On désire démontrer le théorème suivant :
Théorème de Cauchy : Soient a0, ..., an−1 ∈ C[[z]]. Le C-espace vectoriel des solutions y(z) ∈ C[[z]] de
l’équation différentielle

y(n)(z) + an−1(z)y
(n−1)(z) + ...+ a0(z)y(z) = 0 (1)

est de dimension n, et un isomorphisme explicite avec Cn est donné par

y 7→
[
y(0), y′(0), ..., y(n−1)(0)

]T
.

De plus, si les ai ont toutes un rayon de convergence > R, alors les solutions ont un rayon de convergence > R.
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1. On pose A(z) ∈Mn

(
C[[z]]

)
la matrice

A(z) :=


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−a0(z) −a1(z) . . . −an−1(z)

 .
Démontrer que y 7→ [y(z), y′(z), ..., y(n)(z)]T réalise un isomorphisme entre l’espace des solutions de (1)
et l’espace des y(z) ∈ C[[z]]n vérifiant

y′(z) = A(z)y(z). (2)

2. Vérifier que la donnée de n solutions de (2) est équivalente à la donnée d’une matrice Y (z) ∈Mn

(
C[[z]]

)
vérifiant

Y ′ = AY. (3)

3. Soit Y ∈ GLn
(
C[[z]]

)
une solution de (3). Vérifier que X = Y −1 est solution de l’équation différentielle

X ′(z) = −X(z)A(z). On pourra penser à vérifier que la règle de Leibniz (UV )′ = U ′V +UV ′ s’applique
dans le cas de matrices.

4. Démontrer que si Y1 ∈ GLn
(
C[[z]]

)
, Y2 ∈ Mn

(
C[[z]]

)
, la matrice Y −11 Y2 est une matrice constante. En

déduire que si une telle matrice Y1 existe, l’espace des solutions de (2) est de dimension au plus n sur C.

5. En écrivant A(z) =
∑
n>0Anz

n, résoudre (3) avec la condition Y (0) = 1n. Vérifier que la matrice Y
obtenue est inversible.
Indication : on pourra vérifier que la série entière det(Y (z)) est inversible

6. En déduire la partie formelle du théorème de Cauchy.

7. Utiliser l’expression explicite trouvée pour les coefficients de Y pour prouver la partie sur les rayons de
convergence.
Indication : montrez que si A(z) converge sur le disque de rayon R, alors Y (z) converge sur le disque de
rayon r pour tout r < R.

Fonctions analytiques
Exercice 9. Opérations sur les fonctions analytiques.
Montrer les propriétés suivantes :

1. Soit U un ouvert connexe et f, g : U → C deux fonctions analytiques. Montrer que le produit z 7→
f(z)g(z) est analytique.

2. Soient U, V ⊆ C des ouverts et soient g : U → V , f : V → C des fonctions analytiques. Montrer que la
fonction f ◦ g : U → C est analytique. En particulier si f est analytique sur un ouvert U et ne s’annule
pas, la fonction 1/f est analytique (On pourra utiliser le résultat de l’exercice 7).

3. Montrer que cos2(z) + sin2(z) = 1 pour tout z ∈ C, de préférence sans calcul !

4. Soit U ⊆ C un ouvert connexe, on considère une fonction analytique f non nulle sur U et K ⊆ U un
compact. Montrer que f a un nombre fini de zéros dans K.

Exercice 10. Une fonction analytique qui ne se prolonge pas.
Démontrer que la série entière

∑
n>0 z

2n définit une fonction analytique sur D qui diverge au voisinage de
e

2ikπ
2m pour k ∈ Z,m > 0, et en déduire qu’il existe des fonctions analytiques sur le disque qui ne se prolonge à

aucun ouvert connexe contenant strictement le disque.

Exercice 11. Annulation des coefficients de Taylor.
Soit U ⊆ C un ouvert connexe, f une fonction analytique sur U qui n’est pas un polynôme. Montrer qu’il
existe un point a ∈ U tel qu’aucun coefficient du développement en série entière de f au voisinage de a n’est
nul.
Indication : on pourra montrer que l’ensemble des points où la non-annulation de tous les coefficients est
vérifiée est un Gδ dense.
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Exercice 12. Sommation d’Abel.
Soit (An)n>0 et (Bn)n>0 deux suites de nombres complexes.

1. Montrer la formule de sommation par partie : pour tout entier n ≥ 1 on a

n−1∑
k=0

(Ak+1 −Ak)Bk = (AnBn −A0B0)−
n−1∑
k=0

Ak+1(Bk+1 −Bk).

2. Soit (an)n>0 une suite de nombres complexes telle que la suite des sommes partielles (
∑n
i=0 an)n>0

est bornée, et (Bn)n>0 une suite de nombres réels strictement positifs, décroissante, tendant vers 0.
Démontrer que la série

∑
n anBn converge.

3. Soit (Bn)n>0 une suite décroissante de nombres réels tendant vers 0 telle que la série de terme général Bn
est divergente. Montrer que la série entière

∑
nBnz

n a pour rayon de convergence 1 et est convergente
en tout point de U = {z ∈ C : |z| = 1} sauf en z = 1.

Exercice 13. Lemme de la partie réelle.
Soit f(z) =

∑
n anz

n une série entière à coefficients complexes, de rayon de convergence +∞. Pour tout
r ∈ R>0, notons M(r) = sup|z|6r |f(z)| et A(r) = sup|z|6r |<(f(z))|. Le but de l’exercice est de montrer le
lemme suivant :
Lemme de la partie réelle : Pour tous r,R ∈ R>0, tels que R > r, on a

M(r) 6
R+ r

R− r
|f(0)|+ 2r

R− r
A(R).

1. Montrer que pour tous n > 1 on a

an =
1

πrn

∫ 2π

0

<(f(reiθ))e−inθdθ.

2. On suppose dans cette question que f(0) = 0. Montrer que pour tout entier n > 1 et tout r > 0 on a

|an| 6
2A(r)

rn
.

En déduire que pour tous R > r > 0, M(r) 6 2rA(R)
R−r .

3. Conclure.
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