TD n°1: Fonctions analytiques, séries entiéres

Analyse complexe 2025-2026, Thomas Serafini
tserafini@dma.ens.fr

Les exercices marqués d’'un £9% sont 4 faire en priorité, ceux marqués d’un &t sont des exercices complémen-
taires, & faire pour aller plus loin.

Séries entiéres

Exercice 1. Vrai-faux d’échauffement.
Vrai ou faux ? Donner une démonstration ou un contre-exemple. On considére f(z), g(z) € C[z], et on note
p(f) le rayon de convergence d’une série entiére f.

L p(f +g) = min(p(f), p(g)) et p(fg) = min(p(f), p(g))-
- Sip(f) > p(g), alors p(f + g) = p(g).

- Sip(f) > p(g), alors p(fg) = p(g).

- W N

. Si f € C[z] converge sur le cercle |z| = r, alors p(f) > r. Et en remplagant la conclusion par p(f) > r ?

p(f) = p(f")-

Exercice 2. Série harmonique.
On définit, pour n > 1, H, =1+ % +..4+ L et

n’

ot

_ log(1—=2

Calculer le rayon de convergence de cette série et démontrer que H(z) = T ) formellement (et donc pour

tout z dans le disque de convergence).

Exercice 3. Une expression explicite pour les suites de Lucas.
On consideére, pour a,b € C, b non-nul, la suite définie par Lo = 0,L; =1 et Lyy1 = aL, + bL,_1. On pose
L(z) = Zn>0 L,z".

1. Montrer que L(z) = y—Z—=-
2. En écrivant 1 — az — b2?2 = —b(z — a)(z — ) et en réalisant une décomposition en éléments simples,

donner une expression explicite pour L,. On pensera a différencier les cas o # § et a = .

Exercice 4. Somme de carrés.
Notons r9(n) le nombre de points a coordonnées entiéres positives sur le cercle de rayon y/n, et D,, le nombre
de points & coordonnées entiéres positives dans le disque de rayon /n (par exemple, ro(5) = 2 car 22 + 1% =

12 4 22 = 5). Démontrer que
2

Z PO Z ro(n)z"

m=0 n>0

puis que

1iz sz2 :ZDnz".

m=0 n>=0

Quels sont les rayons de convergences de ces séries 7

TMerci & Hadrien et Louise pour ce phoque et ce raton-laveur en Tikz.



£9 Exercice 5. Un peu de combinatoire.
Soit P, le nombre de fagons de partitionner un ensemble de n éléments en morceaux de cardinal 1 ou 2, on

considere S(z) := 37, <

1.

2.
3.

Py

n
.
n.

Prouver I'égalité de séries entiéres

S'(z) = (1+ 2)5(2).
En déduire une expression de S(z).

En déduire une formule pour P,.

Exercice 6. L’anneau C[z].
On introduit sur C[z] la valuation ord définie par

ord Z anz" | =min{n >0:a, # 0}

n=0

et ord(0) = +oo0.

1.
2.
3.

Montrer que ord(f) > k si, et seulement si z* divise f dans C[z].
Veérifier que ord(fg) = ord(f) + ord(g).

Montrer que f(z) € C[z] est inversible si et seulement si elle vérifie ord(f) = 0. En particulier, tout
élément f(z) € C[[z] s’écrit uniquement comme f(z) = 2"g(z) avec g inversible et n = ord(f).

Soit I C C[[z] un idéal. Montrer que I C zC[z].

. Montrer qu’en fait il existe m tel que I = z™C[z]. L’anneau C[z] est un anneau principal !

Vérifier que les résultats de cet exercice restent valides si 'on remplace C[[z] par Panneau C{z} des séries
entiéres de rayon de convergence > 0.

&’ Exercice 7. Composition de séries entiéres.
Soit f(2) = >_,50an2" € C[2], h(z) = 32,5, cn2™ € C[z]. Onmote 3, - Cp 2" la série entiére h(2)™. On
définit la série entiére composée f(h(z)) comme :

Fh(z) = ( a,nCmm) 2",
0

n>=>0 \m=

. Montrer que (f+g)(h(z)) = f(h(2))+g(h(z)) par calcul direct. Pouvez-vous montrer la méme propriété

pour le produit ?
On note f,,(z) le polynéme ag + a1z + ... + a;, 2™ et hy(2) le polynéme ¢z + ... + ¢, 2"

. Montrer que pour m,n > k, les termes de degré < k du polynéme f,,(h,(z)) ne dépendent pas de

m,n >k et sont les mémes que ceux de la série entiere f(h(z)).
En déduire que la composition est compatible au produit et associative.

Veérifier que si f et h ont un rayon de convergence non-nul, alors f(h(z)) a un rayon de convergence
non-nul, et que f(h(z)) est bien le développement en série entiére de la fonction f o h au voisinage de 0.

& Exercice 8. Théoréme de Cauchy pour les équations différentielles.
On désire démontrer le théoréme suivant :
Théoréme de Cauchy : Soient ag,...,a,—1 € C[z]. Le C-espace vectoriel des solutions y(z) € C[z] de
I’équation différentielle

Y (2) + an-1(2)y "V (2) + o+ ao(2)y(z) = 0 (1)

est de dimension n, et un isomorphisme explicite avec C™ est donné par

y = [5(0).4/(0), ..y D (0)]".

De plus, si les a; ont toutes un rayon de convergence > R, alors les solutions ont un rayon de convergence > R.



1. On pose A(z) € M,,(C[z]) la matrice

0 1 0
A=, 0
—ag(z) —ai1(z) ... —an-1(2)

Démontrer que y — [y(2),y'(2), ...,y (2)]” réalise un isomorphisme entre I'espace des solutions de (1)
et Pespace des y(z) € C[[z]™ vérifiant

y'(2) = A(2)y(2). (2)

2. Vérifier que la donnée de n solutions de (2) est équivalente & la donnée d’une matrice Y'(z) € M, (C[2])
vérifiant

Y/ — AY. 3)

3. Soit Y € GL,,(C[z]) une solution de (3). Vérifier que X =Y ~! est solution de I'équation différentielle
X'(z) = =X (2)A(2). On pourra penser & vérifier que la régle de Leibniz (UV)' = U’V + UV’ s’applique
dans le cas de matrices.

4. Démontrer que si Y € GL, (C[z]), Y2 € M, (C[z]), la matrice Y;”'Y> est une matrice constante. En
déduire que si une telle matrice Y; existe, 'espace des solutions de (2) est de dimension au plus n sur C.

5. En écrivant A(z) = 2,5, An2", résoudre (3) avec la condition Y (0) = 1,. Vérifier que la matrice Y
obtenue est inversible.
Indication : on pourra vérifier que la série entiére det(Y (z)) est inversible

6. En déduire la partie formelle du théoréme de Cauchy.

7. Utiliser I'expression explicite trouvée pour les coefficients de Y pour prouver la partie sur les rayons de
convergence.
Indication : montrez que si A(z) converge sur le disque de rayon R, alors Y (z) converge sur le disque de
rayon r pour tout r < R.

Fonctions analytiques

£9 Exercice 9. Opérations sur les fonctions analytiques.
Montrer les propriétés suivantes :

1. Soit U un ouvert connexe et f,g : U — C deux fonctions analytiques. Montrer que le produit z +—
f(2)g(z) est analytique.

2. Soient U,V C C des ouverts et soient g: U — V', f: V — C des fonctions analytiques. Montrer que la
fonction fog: U — C est analytique. En particulier si f est analytique sur un ouvert U et ne s’annule
pas, la fonction 1/f est analytique (On pourra utiliser le résultat de Pexercice 7).

3. Montrer que cos?(z) + sin?(z) = 1 pour tout z € C, de préférence sans calcul !

4. Soit U C C un ouvert connexe, on considére une fonction analytique f non nulle sur U et K C U un
compact. Montrer que f a un nombre fini de zéros dans K.

£9 Exercice 10. Une fonction analytique qui ne se prolonge pas.
Démontrer que la série entiére 2790 22" deéfinit une fonction analytique sur D qui diverge au voisinage de

e pour k € Z,m > 0, et en déduire qu’il existe des fonctions analytiques sur le disque qui ne se prolonge a
aucun ouvert connexe contenant strictement le disque.

Exercice 11. Annulation des coefficients de Taylor.

Soit U C C un ouvert connexe, f une fonction analytique sur U qui n’est pas un polynéme. Montrer qu’il
existe un point a € U tel qu'aucun coefficient du développement en série entiére de f au voisinage de a n’est
nul.

Indication : on pourra montrer que l’ensemble des points ot la mon-annulation de tous les coefficients est
vérifiée est un Gs dense.



Exercice 12. Sommation d’Abel.
Soit (Ap)n>0 et (Bp)n>o deux suites de nombres complexes.

1. Montrer la formule de sommation par partie : pour tout entier n > 1 on a

n—1 n—1
Z(Ak—H — Ay)Br = (A By, — AoBy) — Z Apt1(Bry1 — Bi).
k=0 k=0

2. Soit (an)n>0 une suite de nombres complexes telle que la suite des sommes partielles (Z?:o an)n>0
est bornée, et (B))n>0 une suite de nombres réels strictement positifs, décroissante, tendant vers 0.
Démontrer que la série En an B, converge.

3. Soit (By)n>0 une suite décroissante de nombres réels tendant vers 0 telle que la série de terme général B,
est divergente. Montrer que la série entiére ), B,2" a pour rayon de convergence 1 et est convergente
en tout point de U= {z € C:|z| =1} saufen z = 1.

¢ Exercice 13. Lemme de la partie réelle.
Soit f(z) = >, anz" une série entiére a coefficients complexes, de rayon de convergence +oo. Pour tout
7 € R>o, notons M(r) = sup, <, | f(2)] et A(r) = sup, <, [R(f(2))[. Le but de I'exercice est de montrer le
lemme suivant :
Lemme de la partie réelle : Pour tous r, R € R+, tels que R > r, on a

R+r 2r
M(r) < s |£(O0)] +

-A(R).

1. Montrer que pour tous n > 1 on a
1 27 ) )
ap = — R(f(re??))e ™"0dh.

n
wr 0

2. On suppose dans cette question que f(0) = 0. Montrer que pour tout entier n > 1 et tout » > 0 on a

2A(r)

/,«77/

‘an| <

En déduire que pour tous R > r > 0, M(r) < %_(f).

3. Conclure.



